ReserveBlock Core August 2022 Audit

Alex Williams

PhD in Mathematics!

1 Preface

The findings and recommendations herein were conducted during a consultation and audit of the ReserveBlock-
Core project during August 2022. During this time, the project has been undergoing significant changes

and will continue to do so in the near term. The paper highlights implementation details, areas of concern,

potential improvements, and various trade-offs relevant to the project.

Contents
1 Preface 1
2 Relevant Experience 2
3 Testing Methodology 2
4 Startup processes 2
4.1 Long wait to access wallet functionality L oL 3
4.2 Potentially large database sizeo L 3
4.3 Thread safety e 4
5 Databases 5
5.1 Denormalization L e 5
5.2 Unfiltered queries L e 5
5.3 Indices on natural keys L 6
5.4 Updating via natural keys L e 6
55 Then+1problem e 6
5.6 Block corruptiono e e 7
6 Cryptography 7
6.1 Storage of private keys oL 7
6.2 Post-Quantum attacks 7

7 Client and server 8
7.1 Empty block exploit 8
7.2 Denial of sService e e e 8
7.3 Persistent mempool saturation 9
7.4 Centralized network topology L 9
7.5 Instant send tradeoff 10

Lacquired from Texas Tech University

https://github.com/ReserveBlockIO/ReserveBlock-Core
https://github.com/ReserveBlockIO/ReserveBlock-Core

8 Metrics 10

8.1 Metrics in the imit L e 10
9 Masternodes 11
9.1 Validation complexity e 11
9.2 Masternode censorship L 11
9.3 Submit time moral hazard L 12
10 Adjudicators 12
10.1 FortisPool exploit 12
10.2 Trust is required L e e 12
10.3 Skin in the game Lo 13
10.4 Network partition o e 13
11 Beacons / NFT relays 14
11.1 Storage CONCEINS v v v v v vt et e e et e e e e 14
12 Smart contracts 14
12.1 Turing completeness L e e 14
13 Disclaimer 15

2 Relevant Experience

I have served in several full-stack lead, solo, and architectural software development roles in various contexts
including (but not limited to) distributed systems, third-party integration, single-page SAAS applications,
custom algorithm development, data engineering, and parallel programming. Over the past 10 years, several
of these projects heavily used C# and the .NET ecosystem.

3 Testing Methodology

Performing a comprehensive consultation and audit requires a deep understanding of (a) how the project
should work (i.e. the specification), (b) how and where that specification is implemented in the code, (c) data
as it layers from the API, the local in-memory cache, the persistent database, and the various operations
enabled by the user interface. To achieve this understanding, I had several lengthy discussions regarding
the intended behavior of the project with the core developer, studied the code file-by-file and function-by-
function, and crafted custom queries against the API and the database.

The primary methodology of testing used was examining custom logging and studying the associated code.
Other methods of testing such as unit testing and integration testing were less extensively used due to their
limited ability to uncover unknown issues. As an example, transactions appear to send correctly both from
a unit testing and integration testing perspective. However, when studying the code in the broader context
of the API control flow, we see scalability issues that need to be addressed. A key takeaway is that while we
can shed light on discovered issues, we cannot affirmatively conclude any aspect of the project is devoid of
potentially relevant issues.

4 Startup processes

The ReserveBlock code is compatible with all platforms that support .NET 6.0. When the code is running
for the first time, LiteDB databases are automatically installed assuming there are no permission or storage
issues. Any time a wallet is started, the following are initiated: a command loop, task schedulers, database
validations, a connection to the lead adjudicator, connections to peers, block syncing, the wallet API, and

https://dotnet.microsoft.com/en-us/download/dotnet/6.0
https://github.com/mbdavid/LiteDB

the SignalR server hub(s).

The command loop accepts commands typed by a user. The /help command displays a full list of available
commands. The scheduled tasks perform database cleanup, get the max block height from all connected
peers, and attempt to maintain the connection to peers and the lead adjudicator.

The wallet accepts the following command line options:

1. testnet - This will connect the application to the testnet.
2. enableapi - This will enable the GUI interface and curl calls to the wallet.
3. testurl - This cause the wallet API to port 7777.

4. privKey - This will add the account associated with the private key before the wallet loads.

These commands appear to be correctly implemented.

4.1 Long wait to access wallet functionality Wallet functionality such as creating trans-
actions is disabled until all startup processes are finished. As time progresses, the wait time might be a
concern.

Observations: The methods StateTreiSyncService.SyncAccountStateTrei and
StartupService.CheckForDuplicateBlocks run at start-up. These are temporary solutions there were put
in place to make sure balances are in sync with transactions in a user’s block database and there are no
duplicate blocks in the database. These checks have been causing the wallet to take noticeably longer to
load.

Relevance: The time to load a wallet will continue to increase even if it is synchronized with all existing
blocks. Since this effect was noticeable in less than a month, it would be significantly slower over larger
timeframes such as a year.

Improvements: The need for the balance sync and block duplication check is believed to be resolved
by proper utilization of database transactions and reimplementing block downloading logic.

Suggestions: The severity of these issues suggests their resolution should be verified. To verify users
should be provided with an optional sync command. Ideally, the command would output if any balance
discrepancies were found with a helpful log that a developer could investigate. A reasonable default would be
to automatically run the command until a certain block height has been reached. Also, the sync command
should pause the addition of new blocks since updating balances while recalculating them can cause a
miscalculation.

4.2 Potentially large database size The block database size could grow over 1 terabyte a year.

Observations: At a block height of 120,000 the block database is a little over 200 MB. The code allows
for 1 megabyte per block size.

Relevance: If a small percentage of RBX is staked, the supply of RBX for sale could make validating
unprofitable if data storage costs are too high. Also, a large database can be a prohibitive barrier to entry
for new validators.

Since most blocks currently only contain a block reward transaction, the current growth rate should be
considered a lower bound. At this rate a year of mining will increase the database size by at least 1.75 GB.
Since blocks will be allowed to reach 1 MB in size, a worst-case size increase per day is 2.9 GB. Since the

https://github.com/dotnet/aspnetcore/tree/main/src/SignalR

project is still early and the bound estimates have so much variance, it is difficult to estimate the size the
blockchain will be.

Improvements: Parallel downloading is now implemented to utilize more peer bandwidth, which in turn
speeds up block downloading. Significant changes were made to BlockDownloadService.GetAl1Blocks ()
and BlockValidatorService.ValidateBlocks() was added to process validation from a new in-memory
queue. The queue is expected to resolve the duplicate block problem.

Also, logic was added to opportunistically seek out peers that provide higher bandwidth. The following code
implements the opportunistic bandwidth functionality:

var PeersWithSamples = Globals.Nodes.Where(x => x.Value.SendingBlockTime > 60000)
.Select(x => new

{
IPAddress = x.Key,
BandWidth = x.Value.TotalDataSent / ((double)x.Value.SendingBlockTime)
b
.0rderBy (x => x.BandWidth)
.ToArray () ;

var Length = PeersWithSamples.Length;
if (Length < 3)
return;

var MedianBandWidth = Length % 2 == 0 ? .5 * (PeersWithSamples[Length / 2 -
1] .BandWidth + PeersWithSamples[Length / 2].BandWidth)
PeersWithSamples [Length / 2 - 1].BandWidth;

foreach (var peer in PeersWithSamples.Where(x => x.BandWidth < .5 x*
MedianBandWidth))
{
if (Globals.Nodes.TryRemove (peer.IPAddress, out var node))
await node.Connection.DisposeAsync();

Suggestions: It is unclear that any needs to change to increase validating profitability at this time.
Download speed is still significantly limited due to the APT only allowing to request one block at a time. An
aggregate block size table would enable efficient range queries to send several blocks at once.

4.3 Thread safety For convenience and performance, the wallet maintains various data in a global
cache during run time. Some of the fields are not implemented in a thread-safe manner.

For convenience and performance, the wallet maintains various data in a global cache during run time. Some
of the fields are not thread-safe and some of the fields require other fields to be initialized before they are. In
particular, List fields such as TaskAnswerList and FortisPool should be implemented as ConcurrentBag
instances.

Observations: Some fields (most notably List<> fields such as FortisPool, TaskAnswerList, and
BroadcastedTrxList) are not implemented with proper locking mechanisms and some of the fields implicitly
assume they will load in a certain order without the code providing such a guarantee.

Relevance: Fields that are not thread-safe can cause updates to be ignored and processes to intermit-
tently fail. The bugs associated with these problems are often among the most difficult to detect and
troubleshoot.

Improvements: Most static fields were gathered into one file. C# primatives such as SemaphoreSlim
and ConcurrentDictionary were appropriately used for some fields such as Globals.Memblocks and Globals.Nodes.

Suggestions: A careful and appropriate use of C# primitives such as locks, semaphores, concurrent data
structures, and atomic writes could allow the wallet to be thread-safe. Also, the use of a static constructor
can guarantee the order that various fields load. As development time permits, all static fields should be
changed to use thread-safe primitives.

5 Databases

The information stored in the databases consists of blocks with their transactions, unprocessed transactions
(the mempool), a user’s public/private key pairs, nonces for public addresses, and IP addresses of wallet
nodes. Some of the information is denormalized such as account and wallet balances, block heights, and the
most recent block’s hash.

The databases are automatically generated from and are compatible with LiteDB. LiteDB will throw an
exception if there are simultaneous writes to a table. To alleviate this issue, wrapper code for LiteDB was
written to provide safe database modifying functions.

5.1 Denormalization Denormalization consists of both explicit and implicit duplication of data.

Observations: Account and wallet balances are examples of denormalized data in the project. This is
clear because they can be computed solely from the information in the block database.

One denormalization bug found was that wallet balances do not properly update if RBX is sent from another
wallet with the same FromAddress.

Relevance: Denormalization can introduce discrepancies that require proper use of transactions to pre-
vent. Account and wallet balances in particular cannot be trusted if they are not guaranteed to exactly
reflect the transactions in the blocks stored in the database.

Improvements: The validation code was modified to properly use transactions to make sure balance
updates occur in lockstep with the addition of new blocks.

Suggestions: There are other portions of the code that require the use of transactions to maintain data
integrity in cases such as power loss or exceptions being thrown. In particular, code involving unprocessed
transactions requires careful attention to make sure they are removed from the mempool precisely when they
are successfully crafted into a winning block. LiteDB isolates transactions within the context of managed
thread ids. While this provides an intuitive abstraction for developers, future code must not be added that
attempts to modify data in the same table from two different threads at the same time to prevent deadlocking.

Denormalization also benefits from maintaining a 'business logic’ or repository level of abstraction (as opposed
to interleaving raw database queries with non-database code) to maintain invariants and coordinate database
operations. This type of organization can make limit the surface area of code that can cause denormalization
bugs.

5.2 Unfiltered queries Unfiltered queries consist of pulling all data in a database table into memory
instead of asking the database to send a limited number of entries.

Observations: There were database queries that would over time pull a large amount of data into
memory. These places could be found in the code by searching for .FindAll.

Relevance: Pulling a large amount of data into memory could cause the wallet to become unresponsive
and fail to complete operations within the time allocated for them.

Improvements: Now, most queries pull no more rows out of a database than necessary.
Suggestions: A good rule of thumb is to ensure database queries do not request more than 1000 entries at
a time unless the query is performed once at start-up to load data into the cache. Whenever it is appropriate
to use the FindOne command, it should be preferred to Find or FindAllL

5.3 Indices on natural keys Databases indexes allow for more efficient queries at the expense of
a larger database and slower insertions. It is considered best practice to use them for ongoing range and

equality-based queries.

Observations: Indices are currently used on blocks and the mempool. However, they are not used for
addresses.

Relevance: Not utilizing indices when they are appropriate can significantly harm query performance as
tables grow in size.

Improvements: None.
Suggestions: The account database would also benefit from an index on the address column. Lit-
eDB’s EnsureIndex is present with several query operations. Database calls can be reduced by only calling

EnsureIndex on wallet start-up.

5.4 Updating via natural keys One antipattern consists of querying a database for an entity
and then making a separate query to either insert or update the entity depending on if it was found.

Observations: GetSeedNodePeers is one example of this antipattern.
Relevance: This antipattern enables the possibility of duplicate entities.
Improvements: None.

Suggestions: LiteDB exposes the Upsert command which inserts data if there is no existing associated
entity and otherwise updates the associated entity.

5.5 The n + 1 problem The n + 1 problem refers to instances where database operations occur in
a loop rather than sending a constant number of bulk operations to a database.

Observations: The validation code that updates account balances is a hot path in the code where the
n + 1 problem is prominent.

Relevance: Communication to external processes such as database manipulations are relatively far slower
than interprocess communication. The n 4 1 problem can significantly limit an application’s scalability.

Improvements: None.

Suggestions: LiteDB’s Insert and Update commands have overloads for multiple entities, which could
enable a significant reduction of the possible number of database operations while processing blocks, which
would alleviate one of several potential transaction bottlenecks.

5.6 Block corruption A node’s blocks are corrupted if they differ from the majority of other nodes.

Observations: I wrote code that proved it is feasible to craft blocks with any given previous hash that
would be accepted as valid even if it was not considered a winning block (assuming the winning block has
not already been added). These crafted blocks could be given to peers that request them for downloading.

Relevance: For each node, it is critical their blocks are the only ones adjudicators considered accepted.
Validation is not enough. It is feasible to intentionally corrupt one’s peers’ blockchains. It is also feasible to
unintentionally cause corruption by sharing a corrupted block that has been downloaded.

Improvements: Peer banning logic has been added. However, by itself, this does not fully address
either intentional or unintentional block corruption.

Suggestions: User’s should be given a command that allows them to revert to a given block height.
This functionality might need to be used if an invalid block has been detected since it is possible a previous
corrupted block has already been added.

6 Cryptography

The project uses the same elliptic curve cryptography scheme as used by Bitcoin. No faults were found with
the correctness of the implementation.

6.1 Storage of private keys It is critical to minimize access to a wallet’s private keys.

Observations: The lead developer is working on wallet encryption that mirrors Bitcoin’s implementa-
tion. By default, 1000 public addresses will be generated so password access will be primarily limited to
creating new transactions.

Relevance: If keys are unencrypted, it is easier for someone that has physical access to a wallet device
to transfer funds to their personal wallet.

Improvements: None.

Suggestions: Wallets should be encrypted by default. C# provides the SecureString class to minimize
the length of time-sensitive data should as passwords and private keys are stored in RAM.

6.2 Post-Quantum attacks Post quantum cryptography address the fact that several popular cryp-
tography schemes including elliptic curve cryptography can theoretically be easily attacked by a quantum
computer.

Observations: None.

Relevance: It is unclear how soon quantum computers will be able to attack the cryptography used in
this project.

Improvements: None.

Suggestions: There are four popular Post quantum cryptography systems. Two support key exchanges
and two support signatures with different sizes and performance tradeoffs. Once higher priorities items are
addressed, it would be prudent to investigate which if any of those systems could protect a future version of
the blockchain.

https://en.wikipedia.org/wiki/Post-quantum_cryptography
 https://www.microsoft.com/en-us/research/project/post-quantum-cryptography

7 Client and server

Every wallet is both a client and a server. At present, each wallet’s client connects to 4 default server IP
addresses via a peer seed endpoint. Clients are pushed new blocks and transactions from the lead adjudicator
and potentially these 4 peers. The servers expose several methods to clients. Some of the notable ones are
SendAdjMessageSingle, SendAdjMessageAll, ReceiveBlock, SendBlock, and SendTxToMempool.

7.1 Empty block exploit It is easy to craft blocks that only contain a block reward transaction.
If that block is accepted by peer nodes without being distributed as a winning block, then those peers no
longer accept blocks from the adjudicator.

Observations: With the current code, it is possible for a masternode to send any type of adjudicator mes-
sage to all other nodes as if the message was written by the adjudicator via P2PAdjServer.SendAd jMessageAll.
I tested this with a status message and confirmed the status message was broadcasted to my nodes.

Relevance: In particular, it is possible for a masternode to craft a block with only a Coinbase_BlkRwd
transaction and send it to P2PAdjServer.SendAdjMessageAll. Timed correctly, this would cause the lead
adjudicator to broadcast the crafted as the winning block before broadcasting the block that was chosen to
win.

Another version of the exploit consists of using ReceiveBlock to send crafted empty blocks of the next block
height directly to peers. Those peers would in turn rebroadcast the empty block to all their peers and so
forth. Empty blocks can also be sent to peers that request blocks while their chain is synchronizing.

These exploits were found simply by examining the API code as would be most exploits of this nature.

Improvements: P2PAdjServer.SendAdjMessageAll is now a private method that is not an exposed
API method.

Suggestions: Without modifying the consensus algorithm, the most direct solution to prevent the ac-
ceptance of blocks not chosen by the adjudicator is to require adjudicators to also sign blocks. However, this
solution requires carefully deciding what should happen if two adjudicators partitioned from each other sign
and broadcast two different blocks. Network partition attacks could lead to double spending.

7.2 Denial of service A denial of service attack consists of making requests to an API in such a
manner that diminishes the service provided by the API to other nodes.
Observations: The code currently has no protection against denial of service attacks.

Relevance: Usage of the API is free. Therefore, the cost to attack the network is low.

Improvements: Recently, a one request per second rate limiting protocol with an exponential delay has
been added to client and server methods to the code in the developer branch. Every IP address has a 5 MB
restricted buffer before messages are dropped. The core logic is implemented via the following code:

var prev = Interlocked.Exchange(ref Lock.LastRequestTime, now);
if (Lock.ConnectionCount > 20)
Peers.BanPeer (ipAddress, ipAddress + ": Connection count exceeded limit.

Peer failed to wait for responses before sending new requests.",
func.Method.Name) ;

if (Lock.BufferCost + sizeCost > 5000000)
{
throw new HubException("Too much buffer usage. Message was dropped.");
}
if (now - prev < 1000)
Interlocked.Increment (ref Lock.DelayLevel);
else
{
Interlocked.CompareExchange (ref Lock.DelayLevel, 1, 0);
Interlocked.Decrement (ref Lock.DelaylLevel);
}

The exponential penalty will greatly incentivize participating nodes to refrain from spamming their peers with
excessive network requests in a small period of time, which should preserve resources for other participating
nodes.

Suggestions: To support multiple transactions per second, transactions should be queued into batches
that are distributed at most once per second.

7.3 Persistent mempool saturation The mempool is saturated when the flow of incoming
transactions exceeds the flow of transactions being included in accepted blocks.

Observations: It is possible that with enough users sending transactions the mempool will have a higher
flow of incoming transactions than what the code allows to be processed in a given period.

Relevance: A proven solution would be to allow fees to increase to make persistent mempool saturation
reach a market equilibrium until the demand for layer 1 transactions diminishes. That solution will not work
for ReserveBlock since they have chosen to make low fees and fast transactions their top priorities.

Improvements: None.

Suggestions: In the context of mempool saturation the flow of new transactions must be reduced. It
could be worthwhile to consider dynamically reducing the number of transactions allowed to be sent in bulk
as the mempool increases. That will likely resolve the issue. If the saturation remains, then a greater than

one-second delay should be used in the denial of service protection.

Transactions that are sending more RBX should be prioritized over transactions that are sending less to
minimize the effectiveness of an intentional mempool attack.

7.4 Centralized network topology A network is centralized if there is a small percentage of
nodes whose removal would disconnect the network.

Observations: There is currently no finalized decision as to how to best have node traffic rely more on
peers than a handful of hard-coded adjudicator nodes.

Relevance: At present, the disconnection of a small number of nodes can take down the network.

Improvements: None.

Suggestions: The transaction and block transmission protocols should balance using hashes when possi-
ble, strategically using some redundancy without using too much, being resilient to malicious nodes, having
increased robustness with more nodes, and ensuring eventual consistency with exponential convergence.
While insight should be drawn from other blockchains such as Bitcoin [GKL15] for efficient transmission, a
strategy that achieves round ribbon network configuration [CMS04] will likely lead to the best use of network
resources.

7.5 Instant send tradeoff An instant send transaction consists of one that participants have a
reason to accept as finalized before a new block has been accepted.

Observations: Existing transactions must be included in an accepted block to be safely considered
confirmed. Some blockchains offer an instant send option which might be a requested feature.

Relevance: The advantage of blocks is they enable eventual consistency of transactions. It is okay if
different nodes have different transactions in their mempool when blocks are crafted. In contrast, Instant
sending requires full consistency to prevent double-spending.

Improvements: None.

Suggestions: Instant spending could be provided in a centralized manner. For example, adjudicators
could receive instant spend requests, transmit confirmations to their recipients, and then verify the next
winning block contains no transactions from the spending addresses. If the winning block contains another
transaction from a spending address, then the adjudicator should notify the respective recipient the instant
spend was canceled. Then the adjudicator can wrap the winning block with all remaining instant spend
transactions and their signature.

8 Metrics

Metrics are indicators that help people decide if and how they wish to participate in the network.

Observations: The ReserveBlock Metrics page states 82 million RBX have been mined out of a lifetime
supply of 372 million RBX, 0.0155 RBX have been burned, and there are 3550 active masternodes.

Relevance:

8.1 Metrics in the limit Once masternodes have fully mined the lifetime supply of RBX, they will
no longer have any incentive to keep mining. Furthermore, transaction burning will slowly erode the total
supply of RBX until no more transactions can be sent.

The maximum possible number of masternodes there will ever be is 372,000. While efficiently coordinating
that many nodes are possible with load balancing, the cost is and will likely continue to be significant. It is
unclear what if any incentives an adjudicator would have to properly coordinate a large number of nodes.

Improvements: None.

Suggestions: At some point the equations for Masternode compensation and transaction burning will
need to change.

10

https://rbx.network/metrics

9 Masternodes

Masternodes are responsible and rewarded for crafting blocks. While all full nodes are responsible for
verifying only valid transactions exist in blocks, those that craft blocks should ensure transaction censorship
is infeasible, adjudicators have minimal work while the network scales, and in theory, they vote on changes to
the ReserveBlock protocol. These four responsibilities are referred to as security, decentralization, scalability,
and democracy.

9.1 Validation complexity Cyclomatic complexity measures the number of linearly independent
paths through a program’s source code.

Observations: No logical errors were found with block and transaction validation. The functions
BlockValidatorService.ValidateBlock and TransactionValidatorService.VerifyTX respectively have
cyclomatic complexities of 89 and 53 as computed by Visual Studio’s Code Metrics. The [Wik22a] article
states a complexity over 50 is considered ”Untestable code, very high risk”.

Relevance: The validation code is critical for determining which transactions will be accepted. The high
complexity substantially increases the chances of difficult-to-spot bugs, and it made future enhancements
more difficult to implement correctly.

Improvements: None.

Suggestions: All high-complexity functions should be refactored and simplified. The code has matured
enough that properly abstracting the repeated code segments should be feasible and beneficial.

9.2 Masternode censorship Transaction censorship consists of crafting blocks with certain types
of transactions being consistently excluded from accepted blocks.

Observations: I have sent several transactions and have not observed any of them failing. If many trans-
actions are sent at once, it seems to cause nodes to disconnect from the adjudicator. This is understandable
since adjudicators rebroadcast transactions to all peers.

Relevance: If a fixed percentage of masternodes p and the lead adjudicator are running unaltered code,
then due to the random selection of masternodes the probability any given transaction reaches finality
within n blocks exponentially converges to 1. In other words, if the masternode successfully rebroadcasts
transactions to all nodes, then even a modest percentage of validators running unmodified code will make
transaction censorship infeasible assuming the adjudicator is properly running unmodified code.

Therefore, if the mempool is not saturated and the network is well connected, then all valid, broadcasted
transactions should eventually be added to accepted blocks. A key remaining issue is to address the scalability
associated with sufficient connectivity without sacrificing censorship resistance.

Improvements: None.

Suggestions: To maintain scalability it should not be assumed adjudicators will always rebroadcast
transactions to all nodes. If the adjudicator is running unaltered code and the number of nodes seeking to
censor a transaction exceeds the number of nodes the transaction is broadcasted to, then there is a chance
(likely small) that masternodes could censor the transaction.

It might be worthwhile for nodes to keep track of their belief of other nodes’ reputations. With a proper

formulation of reputation, peers with a better reputation should be given priority when broadcasting blocks
and transactions.

11

9.3 Submit time moral hazard Validators are incentivized to try to win blocks. Therefore, the
project should make sure the rules for winning blocks create appropriate incentives.

Observations: Masternode ties are currently broken by the earliest submission time.

Relevance: This incentivizes masternodes to ignore transactions and disregard the default answer sub-
mission flow to answer as soon as a new block is received.

Improvements: None.

Suggestions: Ties can be solved randomly without changing the consensus model.

10 Adjudicators

In the present code, there is a single hard-coded IP address referred to as the lead adjudicator that

1. receives TaskQuestion requests,
2. receives transactions,
3. determines winning blocks and broadcasts them,

4. broadcasts transactions.

The lead adjudicator checks every 2 seconds if at least 28 seconds have elapsed since the last time they
finished requesting new blocks. After the time has elapsed, a valid winning block is randomly selected
among those received from the TaskQuestion requests.

10.1 FortisPool exploit The Fortis pool determines which nodes are considered during block sub-
mission.

Observations: By inspecting the code, one can see it is possible for any node the lead adjudicator’s
client has a subscription with to call ClientCallService.DoFortisPoolWork.

Relevance: This enables such nodes to set the adjudicator’s Fortis pool to be whatever they want. In
particular, a node that requests at the right time could force the adjudicator to select them as a winning
node.

Improvements: None

Suggestions: The client and server APIs need to be minimized and continually scrutinized to ensure no
one is making unintended requests.

10.2 Trust is required When considering processes that are claimed to be random, it is possible
they are biased even if the bias is not obvious.

Observations: I compared several thousand runs of a block submission simulation and compared the
results with 2 weeks worth of actual block submissions when the active validator count was relatively stable.
The distribution of the number of blocks won per address during the period had similar results to the
simulation. So, there was no statistical evidence found that suggests the lead adjudicator is not randomly
selecting winning blocks.

12

Relevance: However, there might be other adjudicators, and potentially a different analysis could detect
a discrepancy in the randomness of chosen blocks. If an honest adjudicator’s node were compromised via a
technical attack or gag order, the accepted blocks could be manipulated without their consent.

Improvements: None.

Suggestions: There are consensus algorithms compatible with proof of stake that does not require
trusted nodes. For example, a deterministic consensus algorithm using round-robin selection [RG21] would
be trustless, and a consensus algorithm that uses a verifiable random function such as Cardano’s Ouroboros
Protocol might require some, but less trust.

10.3 Skin in the game It is not rational to expect people that are not properly incentivized to act
in the best interests of the network to do so.

Observations: The RBX whitepaper found at reserveblock.io adjudicators are entirely altruistic.

Relevance: If adjudicators have no legal or financial incentive to run unmodified software in a highly
secure environment, then then it could be in their favor to deceptively cheat or short RBX and attack the
network. If an adjudicator earns no rewards, they will be subsiding the network with server costs. This does
not align their long-term interest with the rest of the network.

Improvements: None.

Suggestions: Adjudicators should be required to stake a large amount of RBX and should earn some
ongoing RBX for their stake.

10.4 Network partition A Network partition would be a situation where one set of nodes is crafting
and distributing blocks to each other independently of another set of nodes also crafting and distributing a
different set of blocks.

Observations: Most blockchains either implicitly assume network partitions will not happen (e.g. those
that claim instant finality) or rely on their consensus mechanism to address the issue if will ever arise. The
current RBX codebase assumes network partitions will not occur since there is no mechanism to resolve a
block conflict.

Relevance: If more than one node can serve as an adjudicator, then if those nodes lose connection to
each other it is possible both will accept and distribute a different set of blocks.

Improvements: None.

Suggestions: There should be a predefined consensus mechanism to determine the priority adjudicators’
nodes attempt to connect to and which ones have chosen the correct block in the case of a conflict. The
priority of adjudicators can be hard coded in the same way the lead adjudicator is currently hard coded.
The same priority can be used to decide which chain wins consensus. However, it might make sense to use
the most popular block hash to determine which one wins considering the higher priority adjudicator could
have been partitioned into a small network.

13

https://cardano.org/ouroboros
https://cardano.org/ouroboros
reserveblock.io

11 Beacons / NFT relays

The purpose of beacons is to enable NFT creators to send their associated content to those who purchase the
NFT via a smart contract with changing network configurations or communicate in a side channel. Currently,
the creator uploads their content onto a beacon’s storage device which at a later time can be downloaded
by whoever purchased the NFT.

11.1 Storage concerns A beacon serves as a mechanism to allow two peers to share an NFT without
either of them hosting a server.

Observations: The original plan for beacons was to store NFTs on their machines.

Relevance: NFTs could take up significant space. People might treat beacons as cloud providers like
DropBox or Google Drive. Creators might wish to solely share their content with the purchaser.

Improvements: None.

Suggestions: Beacons can function as a server that allows the wallets of the content provider and the
purchaser to ping them whenever they are available. When they are both available, the server can notify
both parties in their subsequent ping request to respectively upload and download the data while the beacon
simply maintains an in-memory buffer until the process is finished. This data could be end-to-end encrypted
which would eliminate any privacy concerns.

12 Smart contracts

The ReserveBlock smart contract functionality is still being developed. Right now, the contracts can illustrate
the Trillium language they are based on, but they have no access to external input or output functionality.

12.1 Turing completeness A Turing-complete language is one in which all possible computational
algorithms can be expressed.

Observations: It is well-known that if a programming language can simulate the General recursive
functions, then it is Turing-complete. Since the Trillium language enables implementing primitive functions,
unrestricted recursion, composition, and addition, it can simulate any general recursive function and is
Turing-complete.

One can test sample Trillium programs in modern web browsers at https://trillium.rbx.network. When
executing programs, the Trillium IDE displays detected errors. Here is an example of code where the
execution time is highly dependent on the input for which no errors are detected.

function Ackermann(a : int, b : string) : string
{
if(a == 0)
return string(int(b) + 1)
if (int (b) == 0)
return Ackermann(a - 1, "1")
return Ackermann(a - 1, Ackermann(a, string(int(b) - 1)))
}

The execution of Ackermann(3, "3") takes less than a second. The execution of Ackermann(5, "5")
continues to run for over a minute before the browser stalls.

14

https://en.wikipedia.org/wiki/General_recursive_function
https://en.wikipedia.org/wiki/General_recursive_function
https://trillium.rbx.network

Relevance: Ideally, runtime would be proportional to contract length. It is well-known that no algorithm
that reliably predicts execution time (or even the termination of) a given program written in a Turing-
complete language can exist. Therefore, there must be some external mechanism to limit the computational
resources of contracts written in Trillium. If such a mechanism is nondeterministic, then nodes can disagree
on valid transactions. Ethereum’s virtual machine enables a deterministic economic incentive model to
restrict resources used by contracts. Since low fees are a priority for ReserveBlock, there must be explicit
contract restrictions in place rather than economic implicit ones.

Improvements: None.

Suggestions: Either contract writers must accept contracts that are not guaranteed to execute or the
smart contract language should be restricted in a manner that guarantees all transactions that compile will
execute.

If a contract relies on data that is only known at runtime, then it is impossible to predict how long the
contract will take to run in general unless every possible runtime value is simulated. This is why Ethereum
contracts fail to finalize if their gas runs out. Contract failure has been one source of Ethereum contract
exploits.

A well-designed domain-specific language could be an elegant solution that avoids the security bugs [ABC17]
discovered and are yet to be discovered in Solidity. Domain-specific languages can be easier to validate,
have more predictable run-time behavior, minimize leaky abstractions such as can be found with the <-
conventions of existing contracts, and give users flexibility without making it feasible for them to craft
exploits.

13 Disclaimer

The lead developer of this project, Aaron Mathis, on behalf of the RBX Foundation contracted me to
perform this audit without bias. This audit was in part funded by RBX coins. With respect to any conflicts
of interest, I have reviewed and commented on this project as I would on any other project

References

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A survey of attacks on ethereum smart
contracts (sok)”. In: International conference on principles of security and trust. Springer. 2017,
pp. 164-186.

[Car22] Cardano. Ouroboros Protocol. https://cardano.org/ouroboros. 2022.

[CMS04] Andrea EF Clementi, Angelo Monti, and Riccardo Silvestri. “Round robin is optimal for fault-
tolerant broadcasting on wireless networks”. In: Journal of Parallel and Distributed Computing
64.1 (2004), pp. 89-96.

[Dav22] Mauricio David. LiteDB. https://github.com/mbdavid/LiteDB. 2022.

[Fou22] ReserveBlock Foundation. ReserveBlock Metrics. https://rbx.network/metrics. [Online; accessed
29-August-2022]. 2022.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. “The bitcoin backbone protocol: Analysis and
applications”. In: Annual international conference on the theory and applications of cryptographic
techniques. Springer. 2015, pp. 281-310.

[Mat22] Aaron Mathis. ReserveBlock-Core. https://github.com/ReserveBlockIO /ReserveBlock-Core. 2022.
[Mic22a] Microsoft. .NET 6.0. https://dotnet.microsoft.com/en-us/download/dotnet /6.0. 2022.
[Mic22b] Microsoft. SignalR. https://github.com/dotnet/aspnetcore/tree/main/src/SignalR. 2022.

15

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://cardano.org/ouroboros
https://github.com/mbdavid/LiteDB
https://rbx.network/metrics
https://github.com/ReserveBlockIO/ReserveBlock-Core
https://dotnet.microsoft.com/en-us/download/dotnet/6.0
https://github.com/dotnet/aspnetcore/tree/main/src/SignalR

[Mic22c]
[RG21]
[Wik22a]
[Wik22b]
[Wik22c]

[Wik22d]

Microsoft. Post quantum cryptography systems. https://www.microsoft.com/en-us/research/project/post-
quantum-cryptography. 2022.

Mayank Raikwar and Danilo Gligoroski. “R3V: Robust Round Robin VDF-based Consensus”.
In: 2021 3rd Conference on Blockchain Research € Applications for Innovative Networks and
Services (BRAINS). IEEE. 2021, pp. 81-88.

Wikipedia. Cyclomatic-complexity. https://en.wikipedia.org/wiki/Cyclomatic.omplexity. 2022.

Wikipedia. General recursive functions. https://en.wikipedia.org/wiki/General,.ecursive punction.
2022.

Wikipedia. Post quantum cryptography. https://en.wikipedia.org/wiki/Post-quantum_cryptography.
2022.

Wikipedia. Turing-complete. https://en.wikipedia.org/wiki/Turing.ompleteness. 2022.

16

 https://www.microsoft.com/en-us/research/project/post-quantum-cryptography
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/General_recursive_function
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://en.wikipedia.org/wiki/Turing_completeness

ReserveBlock Core Post Audit|2022

ReserveBlock Core Post Audit Report

Reviewed by Aaron Mathis

Lead Developer on ReserveBlock Blockchain

Contents
L. Preface . i e 3
2. The Relevant Experience of the Auditor.......... 3
3. Testing Methodology . ..o v it e e 3
4. STarTUD ProOCEeS S S ittt e e e e e e e 4
4.1 - Long wait to access wallet functionality 4
4.2 - Potentially Large Database Size, 5
4.3 - Thread Safety ..o e e e 6
5. Databases . . 7
5.1 = Denormalization 7
5.2 — UnfTiltered QUEIrTies vt e e e e e e e e e e 9
5.3 - Indices on Natural Keys e 9
5.4 - Updating via Natural Keys 10
5.5 — The n + 1 Problem e e 10
5.6 — Block Corruption ... e e e 10
6. Crypltographny ..o e 12
6.1 - Storage of Private Keys ... e 12
6.2 — Post-Quantum ATtacks .. vttt e 13
7. Client and Server .. e e e 13
7.1 — Empty Block EXploit v v e e e e e 13
7.2 - Denial of Service (DOS) .. e 13
7.3 — Persistent Mempool Saturationuiiiiieinn... 14

1

ReserveBlock Core Post Audit|2022

7.4 — Centralized Network Topology . ..ov i vt e i 16
7.5 - Instant Send Tradeoff e 17
B Mg S e et e e e 17
8.1 — Metrics in the Limit ... e e e 17
9. MasternNOdes . o vttt e e 18
9.1 - Validation Complexity vttt e et e e e e e 18
9.2 — Masternode CensorShip «v vt e e e e e e 19
9.3 - Submit Time Moral Hazardt 19
10, AdJUudicators . oo e e 20
10.1 = FortisPool EXploit «v. v e e e e e 20
10.2 = Trust ds Required e e e e e 20
10.3 = SKin AN The game ...t e e 20
10.4 — Network Partition ... e e e 21
11. Beacon / NFT RelaY S . vttt it ittt e e e e et e e e e e e e e 21
11.1 StOrage CONCEIMS .ttt e et e et e e e e e e e e e e e e e e e 21
12, Smart Contracts . o e e e e 22
12.1 - Turing Completeness .ot e e e e et e 22
13, DISClamimer v ittt e e e e e e e e 24
CONC LUS T ON s e et e e e e e e e e e e e 24

ReserveBlock Core Post Audit|2022

1. Preface

This document is a post audit report on the findings from the
“ReserveBlock Core August 2022 Audit” known as the “audit”. It is
meant as a supplemental document to audit and will describe what steps
have been taken to resolve or improve upon the findings. Not all
findings in the audit merited a change and some findings in the audit
are subjective to philosophical opinion. Both documents are meant to
support one another and should be reviewed in tandem.

2. The Relevant Experience of the Auditor

Alex Williams, known as “the auditor” or “auditor”, portrayed and
demonstrated to the project through not only work history, but through
proficiency in both C# and Blockchain technology. The auditor having
worked on Blockchain projects for exchanges, trade engines, and other
Blockchain related projects was a driving factor in selection. The
second reason was they have a profound understanding of the core
language and offered to not only point out findings in the audit, but
also to provide legitimate source code where relevant, to resolve open
issues. The auditor also demonstrated strong architectural skills and
required very Llittle guidance and deployed suggested code in a
proficient and timely manner. Overall, the auditor proved to have both
the skills and knowledge to provide a thorough report.

3. Testing Methodology

The auditor provided his methods for testing and they were deemed to
be both useful and proficient. They revealed a few non thread-safe
variables that were local in-memory. The auditor studied the code
“file-by-file” and has multiple well-coordinated calls to go over any
questions 1in regards to existing source code for explanation when

3

ReserveBlock Core Post Audit|2022

requested. The testing measures of the auditor were extremely helpful
in revealing areas of optimization, as well as, a few areas of minor
exploits.

4, Startup Processes

The startup processes in this section were all noted, with no issues
reported. The auditor points out the network DBs are used with the
LiteDB engine and the Peer-to-Peer (P2P) protocol 1is maintained with
the help of SignalR.

4.1 - Long wait to access wallet functionality

This was due to chain sync on the state trei files. This was resolved
by improving the LiteDB functions and removing conflicting inserts
that cause the data to experience denormalization and need a sync
tool. Since removing the sync tool wallet startup has returned to a
normal state. The sync tool was ran until the update (v2.1) to ensure
all databases have a synced and same trei and no denormalization
occurs. Also users can run the sync manually if they choose with the
/synctrei command.

Running the /synctrei will call the public static async Task
SyncAccountStateTrei()'call. This method will ensure in the event you have
a system crash or other dissues with settlement due to localized
problems (dssues with the node/machine not the network) that the treis
are in sync. You can find this method in the StateTreiSyncService.cs
file. Below is the use of how it will output in the CLI

Task SyncTreis()

g Trei Sync");

ncAccountStateTrei();

or log for report on balances updated.™);

ReserveBlock Core Post Audit‘2022

or report on balances updated.

errorlag.txt - Notepad

File Edit Format View Help

[11/9/2022 8:44:44 PM] : [StateTreiSyncService()] : Balance Off: RFmB1lnNn426MmgvUviSnktdpxfunt3SRcn | Reported: 1320.999988505859375 - Actual: 1288.999988505859375
[11/9/2022 §:44:44 PM] : [StateTreiSyncService()] : Balance Off: RK3UEVintpfh2r7vieMMgvXgSBI9VFKEeo | Reported: 1544.8@ - Actual: 1512.00

This was a simulated example above, but this is an example of how it
would and can presently run in mainnet.

4.2 - Potentially Large Database Size

While this is something that is an accepted burden in blockchain
technology, the core wallet does have pruning on its list of features
to be added currently. While the risk of the size growing too large s
not of concern today, adding pruning will alleviate any potential
constraints in the future.

The auditor also deduced that block downloads were happening
synchronously amongst the nodes and created a parallel download tool
that allowed clients to now download blocks from nodes in async and in
parallel to increase block download performance for now and in the

5

ReserveBlock Core Post Audit‘zezz

future. There was also code added to seek out higher bandwidth peers
to dincrease performance in that regard as well. Below is a code
excerpt provided by auditor and implemented in the RBX Core client.

Task DroplLowBandwidthPeers()

DropDisconnectedPeers();

PeersWithSamples = s.Nodes .Where(x => x.Value.SendingBlockTime > 60008)
.Select(x =>

I

L

IPAddress = x.Key,

BandWidth = x.Value.TotalDataSent / ((Jx.Value.SendingBlockTime)
)]
.OrderBy(x => x.BandWidth)
.ToArray();

Length = PeersWithSamples.Length;
if (Length < 3)
return;

MedianBandWidth = Leng == @ ? .5 * (PeersWithSamples[Length / 2 - 1].BandWidth + PeersWithSamples[Length / 2].BandWidth)
PeersWithSamples[Length / - 1].BandWidth;

foreach (peer in PeersWithSamples.Where(x => x.BandWidth < .5 * MedianBandWidth))
¢
if(Globals.Nodes.TryRemove(peer.IPAddress, node))
node.Connection.DisposeAsync();

In the future it would be prudent to implement a block clustering
system that allows for more than 1 block at a time and can be accepted
at the masternode level and implemented by devs, however, at this time
the chain is syncing in a very quick manner, and it is not currently
needed.

4.3 - Thread Safety

The auditor went through the entire code base and found non-thread
safe items and improved using locks, semaphores, and concurrent data
structures like ConcurrentDictionary and ConccurentBag. Moving forward
these models will continue to be adopted throughout the code to ensure
thread safety remains at a high priority.

Some examples of this in mainnet are the following variables:

MemBlocks

InactiveVa

s > Locators
> RejectAssetExtensionTypes

ReserveBlock Core Post Audit‘zezz

The ConcurrentMultiDictionary is a prime example of using these in a
thread safe manner. You can see this code in the

ConcurrentMultiDictionary.cs file. Below is a code example:

K1, (K2, V)>();
2, (K1, V)>();

UseDict2 =

[(K1, K2) key]

I
L
(WritelLock)
{
if(Dictl.TryGetValue(key.Tteml, Out1))
{
Comparer = Equalit arer<K2>_Default;
if (!Comparer.Equals(Outl.Iteml, key.Item2))
Dict2.TryRemove (Outl. Iteml,);
1
J

if (Dict2.TryGetValue(key.Item2, Out2))
{
Comparer = FgqualityC er<K1>.Default;
if (!Comparer.Equals(Out2.Iteml, key.Iteml))
{
UseDict2 = H
Dictl.TryRemove (Out2.Iteml,);

}
Dictl[key.Iteml] (key.Item2,

Dict2[key.TItem2] (key.Iteml,
UseDict2 = H

5. Databases

5.1 - Denormalization

The auditor was requested to help find the conflict in a header record
that was causing a denormalization of one of the treis. This
denormalization was corrected in mainnet with the state sync, but this
was not a desired permanent solution. The auditor provided an elegant
solution that did not require a refactor or use of another library or
tools. “The validation code was modified to properly use transactions
to make sure balance updates occur in lockstep with the addition of
new blocks.” from the audit. This can be reviewed in the
SafeDbExtensions.cs file in the source code.

-

ReserveBlock Core Post Audit‘zezz

SemaphoreSlim was leverage to ensure DBs are performing in a manner to
prevent any kind of denormalization. Two commands for Func<S> and
Action were created to allow for this in the code.

S Command<S, T>(ILiteCollection<T> col, Func<S> cmd)

DbSemaphore = col.GetSlim();
DbSemaphore . Wait();
try
I
18
return cmd();

inally

if (DbSemaphore.CurrentCount == €
DbSemaphore.Release();

Command<T>(IliteCollection<T> col, Act

DbSemaphore = col.GetSlim();
DbSemaphore._Wait();
try
I
L
cmd();

inally

if (DbSemaphore.CurrentCount == @)
DbSemaphore.Release();

From here updates and inserts will now use the following “safe”
methods.

UpdateSafe<T>(IliteCollection<T> col, IEnumerable<T> entities)

return Command(col, () => col.Update(entities));

InsertSafte<T>(IliteCollection<T> col, IEnumerable<T> entities)

return Command(col, () => col.Insert(entities));

ReserveBlock Core Post Audit|2022

5.2 - Unfiltered Queries

The auditor was tasked with finding inefficient or improper queries
that could cause performance issues down the life of the project due
to large amounts of blocks. The auditor went through and improved all
queries, if needed, in all files of the project to ensure only the
needed amounts of records are needed.

Also the lead developer added an in-memory set of blocks that function
to perform many task both speedily and accurately.

The blocks are now Dequeued from the variable and the latest is adding
keeping a record of the most recent 300 blocks in memory for faster
querying and block processing rather than reading from the hard drive
every time.

StartupMemBlocks ()

blockChain = Bl GetBlocks();
Globals.MemBlocks = ueue<Block>({blockChain.Find(LiteDB y.Al1({LiteDB.Query.Descending), @, 300));

UpdateMemBlocks(Block block)

Globals.MemBlocks .TryDequeue(Block test);
Globals.MemBlocks|. Enqueue(block);

5.3 - Indices on Natural Keys

The largest dissue here was to ensure that the protocol performs an
EnsureIndex on the proper tables. This is now down at startup in the
DbContext.cs. The code below shows required indexes have now been
ensured and in a thread safe manner.

ReserveBlock Core Post Audit‘zezz

blocks = DB.GetCollection<Block>(RSRV_BLOCKS);
blocks.EnsureIndexSafe(x => x.Height);

transactionPool = -DB.GetCollection<Tran n> -RSRV_TRANSACTION POOL);
transactionPool.EnsureIndexSafe(x => x.Hash, Dk
transactionPool . EnsureIndexSafe(x x.FromAddress,

transactionPool.EnsurelndexSafe(x => x.ToAddress,

transactions = .DB_Wallet.GetCollection<Tra .RSRV_TRANSACTIONS);
transactions.EnsureIndexSafe(x => x.Hash, i
transactions.EnsureIndexSafe(x % . FromAddress,
transactions.EnsureIndexSafe(x => x.ToAddress,);

aTrei = .DB_AccountStateTrei.GetCollection<AccountStateTrei> -RSRV_ASTATE_TRETI);
aTrei.EnsureIndexSafe(x => x.Key, TE

5.4 - Updating via Natural Keys

This is a design decision and while the auditor is not wrong, this is
also not a problem within the code and no change is needed, however,
in areas of simple table records with natural or singular keys a
pattern could be implemented as the auditor described, however, no
queries are done in these areas of large intent thus not causing any
performance issues.

5.5 - The n + 1 Problem

While this is an interesting observation by the auditor an improvement
is not needed at this time. As once synced new blocks come in only one
at a time, and so each block needs to be processed immediately as
block times are relatively fast (25 seconds), so they are processed
immediately to create space and free up resources for next incoming

block.

There were some areas where the network does batch processes to ensure
no bottlenecks are reached. One example would be in how the network
processes the mempool queues to ensure the entire pool is processed
before ever crafting the transactions into a block and that they are
removed to ensure no duplication of these items are kept. This is also
joined with the very strict consensus rules.

5.6 - Block Corruption
The auditor provided “code that proved it is feasible to craft blocks
with any given previous hash that would be accepted as valid even if

10

ReserveBlock Core Post Audit‘zezz

it was not considered a winning block (assuming the winning block has
not already been added). These crafted blocks could be given to peers
that request them for downloading”.

Another system of peer banning logic was added to also not only reject
bad/corrupt blocks, but to also ban the peer attempting to spread
them. The following code shows if a block does not pass validation
then it can result in a peer being banned.

foreach (height in heights)
ce_BlockDict.TryRemove(height, blockInfo))
(block, ipAddress) = blockInfo;

result = ValidateBlock(block,);
if (!result)

.BanPeer(ipAddress, ipAddress + " I tht ™ + height, c g
ility.LogError("Banned IP " + ipAddress + " at " + height, "ValidateBlocks™);
s .Nodes . TryRemove(ipAddress, node))

node.Connection.DisposeAsync
yle WritelLine("Block was rej ed fro " + block.Validator);

if (Gl s.IsChainSynced)
ritersS ce.OutputSamel ineMarked(($"Time: [yellow]{DateTime.Now}[Block [g 1({block.Height})[/]

e.Write($"\rBlocks Syncing... Current Block: {block.Height} ");

There is currently a command to revert back to a specific block height
and there 1is a service that will create checkpoints for a client to
create snapshots of the current state of all database files allowing
for an easy recovery or transfer of a node. This can be found in the
BlockRollbackUtility.cs

11

ReserveBlock Core Post Audit|2022

Task< > RollbackBlocks(numBlocksRollback)

s.IsResyncing = ;
5s.StopAllTimers = ;
height = G als.lLastBlock.Height;
newHeight height - (JnumBlocksRollback;

blocks = Blo H.GetBlocks{)ﬂ
blocks.DeleteM Safe(x => x.Height > newHeight);

DbContext.DB.Checkpoint();

result = ResetTreis();

Globals.IsResyncing =
Globals.StopAllTimers =

return result;

6. Cryptography

6.1 - Storage of Private Keys

The auditor pointed out rather quickly that there is storing of
private keys in plain text. While this is not an issue if good OPSEC
is followed, there still needed to be a way to allow clients to
protect keys should a wallet database file be stolen, or leaked.

The solution was to allow the encryption of private keys.

Wallet encryption works with keystore DB and AES encryption as well as
a user provided password. The user "dnputs a password and that password
is then used to encrypt the encryption keys that encrypt private keys
in the keystore. At the time of encryption 1000 addresses are
generated so the user does not have to type in their password to
create new addresses. Should they reach this threshold a password is
requested and a new set of addresses s generated.

If desired the WalletEncryptionService.cs file outlines the algorithms
used and the Keystore.GenerateKeystoreAddresses() method can be
reviewed to see the generation of keys.

12

ReserveBlock Core Post Audit|2022

6.2 - Post-Quantum Attacks

Something all projects need to mindful of is the use of quantum
machines to attack the keys created. It was determined that while the
threat itself s real, the timeline of this threat is deemed to be far
enough out that a scheduled refactor of the keys can be performed 1in
the future.

The project has been following the Brown mathematicians’ four
algorithms for a post-quantum era and can integrate one of the
solutions before the issue potentially can become a risk.

7. Client and Server

7.1 - Empty Block Exploit

This was resolved by requiring an adjudicator to sign a block and will
no longer allow an empty block to be submitted to exploit a guaranteed
win. The following code shows where a signature is now required in the
adjudicator processes.

signature = AdjudicatorSignBlock(winnersBlock.WinningBlock._Hash);

winnersBlock.WinningBlock. Adjudlcaforblﬂnature = signature;
result = 31loc idatorService.ValidateBlock(winnersBlock.WinningBlock);

7.2 - Denial of Service (DoS)

The auditor was tasked with reviewing areas where DoS events could
occur and then provide code to help resolve these types of dssues.
Below is an excerpt of the code to help prevent a node attempting to
spam from a singular IP address.

13

ReserveBlock Core Post Audit‘zezz

Task<T> SignalRQueue<T>(HubCall ntext context, sizeCost, Func<

s.LastBlock.Height <= Globals.BlockLock)
func();

Util.GetMillisecondTime();
etIP(context);
Messagelocks.TryGetValue (ipAddress, Lock))

d.Exchange(Lock.LastRequestTime, now);
> 20)
BanPeer(ipAddress, ipAddress + ": Connect count exc d limit. Peer failed to wait for respo

if (Lock.BufferCost + sizeCost > 5000000)
I

L

throw HubEx: ion("Too much buffer usage. e was dr
T
if (now - prev < 1089)

Inte ncrement (Lock.Delaylevel);

ompareExchange(Lock.DelaylLevel, 1, @);
-Decrement (Lock.DelaylLevel);

return SignalRQueue(Lock, sizeCost, func);

The client benefits from this as it will help protect the non-advanced
users who perhaps does not know how to configure a firewall properly,
or for those who have improperly configured.

7.3 - Persistent Mempool Saturation

This was an area the client needed review and it was determined the
mempool could be saturated with endless amounts of transactions. This
is mainly due to the “near-zero” fee structure. A gasless environment
does require code 1in order to prevent or defend this from being
exploited.

Two solutions were integrated by the lead developer after audit and
are implemented in mainnet now. The first was to create a transaction
rating system that would intelligently rate transactions and give them
a grade of A-F. This rating also provides as a system of importance.
If a client attempts to spam a large amount of micro-transactions they
could be given a grade of C or D. This would tell all validators to
process them last, if there is any space left in block. Should a user
spam many transactions beyond normal thresholds any period, the system
will automatically determine that spamming is occurring, and it will
begin giving all new transactions for the next block a rating of F.
Any transaction with a rating of F will automatically fail.

14

ReserveBlock Core Post Audit‘zezz

The second solution implemented, was to allow each address 10
transactions per block. This may appear as an inherent bottleneck,
however it really is not as spreading legitimate transactions amongst
a few addresses 1is rather simple and can scale rather easily due to
the low fee structure.

This system was tested in testnet and is now in mainnet and the data
has proven to resolve spamming of transactions and forces users to act
responsibly and limit abuse of the networks mempool.

The above examples can be seen in the code below:

This gives transactions a rating.

Task<TransactionRating> GetTransactionRating(T

TransactionRating rating = TransactionRating.F;

try

s
.8

if (tx.TransactionType == TransactionType.TX)
t
rating = TXRating(tx);

1
¥

if (tx.TransactionType == TransactionType.ADNR)

{
rating = ADNRRating(tx);

1

i)

if (tx.TransactionType == TransactionType.NFT_MINT ||
tx.TransactionType == TransactionType.NFT_SALE |
tx.TransactionType == TransactionType.NFT_BURN ||
tx.TransactionType == TransactionType.NFT_TX)

{
rating = NFTRating(tx);

1
¥

return rating;
1

i)
atch(E i ex)

C
I
1

lity.LogError($"Error rating transaction. TXId = {tx.Hash}. Error Me {ex. }*, "TransactionRatingService.

15

ReserveBlock Core Post Audit‘zezz

This will give an NFT transaction a rating.

<TransactionRating>

TransactionRating rating = TransactionRating.A;

mempool = sact ta.GetMempool();
pool = Tr GetPool();

if (mempool !=)
{
if (mempool.Count() > 18@)
t
txs = mempool.FindAll(x => x.FromAddress == tx.FromAddress &&
(x.TransactionType == TransactionType.NFT_MINT |
x.TransactionType == TransactionType.NFT_SALE ||
x.TransactionType TransactionType.NFT_BURN |
x.TransactionType == TransactionType.NFT_TX));
if (txs.Count() > 18@)
{
rating = TransactionRating.F;
txs.ForEach(x =>
{
x.TransactionRating = TransactionRating.E;

s

pool._UpdateSafe(txs);
rating = TransactionRating.A;
rating = TransactionRating.A;

1
i

return rating;

7.4 - Centralized Network Topology

While the auditor was correct in his findings this was purely a beta
testing option where the foundation has the network connecting to a
few nodes to gather information on P2P protocols. As of today, a
client can connect to any node acting as a full node and the network
can suffer the loss of multiples of nodes and continue to operate as
normal.

The client can now add peers at will and remove or even ban them
should they so choose.

This can be seen in the BaseCommandServices.cs file. There are the
following methods that will allow you to control the network topology
for the client.

16

ReserveBlock Core Post Audit|2022

e public static async void AddPeer()

e public static async void BanPeer()

e public static async void UnbanPeer()

e public static async void ReconnectPeers()

7.5 - Instant Send Tradeoff

The auditor was asked to explore, but not implement anything on the
idea of instant sends. This is something on the suggested roadmap as
with a masternode like system the network can create trustless plenums
to perform specific and targeted tasks. Instant sends would work very
simply in that it would allow a client to connect to a network that
would allow the client to take an address and dinstantly send a
transaction to another client and it would settle in a later block.
This would allow for much faster settlement of NFTs and allow for
instant transfers and can be adopted by the network at any time.

8. Metrics

8.1 - Metrics in the Limit

The auditor reported that eventually validators will have mined most
of the coin through the Llife of the block rewards and halving
schedule, which s by design and used as an anti-inflationary measure,
very similar to that of the Bitcoin Network.

GetBlockReward()
blockReward = 32.¢
currentBlockHeight = s.LastBlock.Height != -1 ? {)Globals.LastBlock.Height : 1;
blockHalvingInterval = 00 ;
halving = currentBlockHeight / blockHalvingInterval;

n=1;
while (n <= halving)

I
L

blockReward /= 2;
n++;

1
I

return blockReward;

17

ReserveBlock Core Post Audit|2022

Another anti-inflationary measure is all TX fees are burned and all
ADNR creation cost (Currently 1 RBX) s burned as well.

The original code for fees was left for transparency but is commented
out thus causing the TX fees to be burned and dropped from the
circulating supply.

coinbase tx2 = Transaction

Amount = GetBlockReward(),
ToAddress = validator,
Fee = ©.00M,

FromAddress = "Coinbase BlkRwd™,
TransactionType = TransactionType.TX

This can be seen in the ADNR transaction creation method where the TX
is set to 1.

9. Masternodes

9.1 - Validation Complexity

The auditor also reported that the validation process is complex and
while this 1is not dincorrect, this is also an area that must be
absolute to guarantee consensus amongst the nodes.

18

ReserveBlock Core Post Audit|2022

The didea of simplifying the code is not incorrect and has already
received simplifications. This can be seen in the form of block
version rules, double spend checks, and the replay protection that
exist. That referenced code has been stripped out and put into Boolean
methods. Continue refactoring of that code can happen over time and 1in
a verifiable way to ensure the risk of losing consensus never occurs.

Version rules have been added based on the height of the chain is when
they will activate now.

if (block.Version > 1)

I
L

version2Result = B ~sionUtility.Version2Rules(block);
if (!version2Result)
return result;

More block validation metrics can be seen in the

BlockValidatorService.cs and the method: public static async Task<bool>
ValidateBlock(Block block, bool blockDownloads = false)

9.2 - Masternode Censorship

This issue was resolved in the latest wallet version of 2.1 mainnet
beta. Larger scaling solutions have been implemented to address the
concerns in the form of pooled consensus. At present there are no
issues presented in the audit left in mainnet. Transactions can be
sent so long as a client has 1/8 peers connected and that peer is
valid. If the client is a validator, then transactions are sent to all
other validators every 3 minutes, however most transactions are
completed within 1 block cycle. This does not mean transactions take 3
minutes, but rather validators are tasked with multiple operations and
may sometimes take longer to do other functions if they are on weaker
machines.

9.3 - Submit Time Moral Hazard

The auditor made a valid point and a group of 30 validators are now
selected and out of that should the winner not arise, a random winner
is chosen rather than basing anything off of time. These 30 are

19

ReserveBlock Core Post Audit|2022

selected based on the winning number and are all given an equally
random chance should the winner not respond in a timely manner. The
winner has 3 seconds to reply plus the time from the 30 others.

10. Adjudicators

10.1 - FortisPool Exploit
The code that allowed this was removed and this exploit has been
effectively removed.

10.2 - Trust is Required

Trust in this processed has been removed within the adjudicator pool.
The auditor as of today has implemented a system that removed trusting
an adjudicator and makes the number selection process both encrypted
and random for all adjudicators thus making it a trustless plenum now
that performs a task within the network void of any trust needed.

This process to reach consensus has a lot of steps involved and can be
seen in the ClientCallService.cs, P2PClient.cs, P2PAdjServer.cs,
P2PServer.cs, and last the ConsensusServer.cs.

10.3 - SKkin in the game

While the auditor’s point is not incorrect this is an opinion-based
remark and the network has opted to take a more Proof of Authority
model that instead of requiring an adjudicator to put skin in the game
they are rather voted into the network and verified in order to remain
altruistic. The biggest notable difference is the network separates
tasks to allow validators to be a large network currently over 3,500
instead of traditional models that are much smaller doing all tasks.

For the user to be eligible for voting in, they must have a proven
history of reliance and uptime as a validator or in similar
experience. There 1is also a minimum spec requirement to ensure the
machine is capable of being an adjudicator. The current minimum spec
would be 8gb of ram and at least a 4 core CPU.

20

ReserveBlock Core Post Audit|2022

Should an adjudicator go offline, voting allows the present
adjudicator pool to remove and add them as needed, or as validator
voting may dictate.

There is no longer a bias amongst adjudicators because the randomized
answers are now encrypted and shielded from the adjudicators
themselves thus allowing even a compromised adjudicator to not affect
the network.

The adjudicators exist in a trustless pool that follows a group
consensus on deciding a winner. This allows for both random and
stabilized validating on the RBX network. It also provides an inherent
layer of redundancy should an adjudicator(s) go offline for any reason
or become compromised.

Each adjudicator, can at will, also implement their own vetting
processes allowing for a healthy wide range of ideas and concepts that
will strengthen the pool and who enter it.

This process to reach consensus has a lot of steps involved and can be
seen in the ClientCallService.cs, P2PClient.cs, P2PAdjServer.cs,
P2PServer.cs, and last the ConsensusServer.cs.

10.4 - Network Partition

This was resolved by creating a consensus model within the adjudicator
pool. While the auditor says improvement none he is as of today adding
the model for this to be in Mainnet before beta exit.

This process to reach consensus has a lot of steps involved and can be
seen in the ClientCallService.cs, P2PClient.cs, P2PAdjServer.cs,
P2PServer.cs, and last the ConsensusServer.cs.

11. Beacon / NFT Relays

11.1 Storage Concerns

The auditor pointed out that beacons can become overburdened with data
both due to malicious and non-malicious events. This prompted an
immediate refactor of the system and now beacons can be owned by

21

ReserveBlock Core Post Audit|2022

anyone and beacons only act as a p2p relay system and no longer act as
a data storage service. Once files are relayed properly they are
cleared from memory, thus removing the risk of filling up beacons HDD.

There is also an intelligent queue system that allows a beacon to not
waste resources when another node/client is not online to receive the
assets of an NFT.

The beacon processes can be viewed in the P2PBeaconServer.cs file.

12. Smart Contracts

12.1 - Turing Completeness

The auditor pointed out that Trillium can suffer from both recursive
functions as well as infinite loops. This is an inherent factor of
Turing complete languages and something that was known to the
foundation.

Since the audit Trillium has now removed the ability for code breaking
recursion and optional parameters and time locks to prevent both
malicious and poorly coded smart contracts from looping forever. This
was done mainly due to the fact that the environment is a no gas

22

ReserveBlock Core Post Audit‘zezz

system so rather than relying on economics to solve this problem,
Trillium itself now can solve the problems when a Self-Executing NFT
is ran, thus still keeping the RBX network from needing a gas-like
system.

id ReportWhileloop(TextlLocation location)
var message = $"While loop was detected.™;
Report i message)
public void ReportForLoop{TextLocation location)
e = $"For loop was detected.™;
Report(location, message);
tion location, string signature)
= $"Potential recursion was detected involving:"™;

tion, message);

new CompilationUnitSyntax(_syntaxTree, members, end0fFileToken):
if {_syntaxTree.PreventLoopsAndRecursion)
RecursionCheck(Root);
n Root;

if (_syntaxTree.PreventLoopsAndRecursion)

_diagnostics.ReportWhileLoop{Current.Location);

var keyword = MatchToken(SyntaxKind.WhileKeyword);

To finalize the process in the Parser.cs file you can review the
recursion check under the private void RecursionCheck SyntaxNode root

This will show the checks to identify improper method calls that can
lead to an infinite recursion loop.

23

ReserveBlock Core Post Audit|2022

13. Disclaimer

It was requested that the auditor provide this section to remain
transparent and to release all information between the auditor and
lead developer.

Conclusion

The auditor and the report were both invaluable and essential to
ensuring that all steps are being taken to provide a safe, stable and
scalable Blockchain product. AlLl items from the audit have been
addresses and plans for the future based on this audit have been added
to roadmap for the project outside of ditems addressed immediately.

24

